Algoritmo de Coppersmith-Winograd

Em álgebra linear, o algoritmo de Coppersmith–Winograd é um algoritmo de multiplicação de matrizes quadradas que, apresenta a maior velocidade assimptótica conhecida até o ano de 2008. O algoritmo recebe o nome de Don Coppersmith e Shmuel Winograd e é capaz de multiplicar matrizes quadradas de dimensão n num tempo de (ver notação Grande-O), tendo então desempenho superior quando comparado com o algoritmo trivial, que corre num tempo , e com o algoritmo de Strassen, de tempo . Pode ser viável melhorar ainda mais o expoente, no entanto ele deve ser pelo menos 2 (uma vez que uma matriz tem valores que precisam ser lidos ao menos uma vez para calcular o resultado exato).

O algoritmo de Coppersmith–Winograd é usado frequentemente como base para a construção de outros algoritmos para provar cotas teóricas sobre tempo de processamento. Porém, ao contrário do algoritmo de Strassen, ele não é usado na prática porque só é vantajoso para matrizes tão grandes que não podem ser processadas pelo hardware existente atualmente.[1]

Henry Cohn, Robert Kleinberg, Balázs Szegedy e Christopher Umans obtiveram novamente o algoritmo de Coppersmith–Winograd usando uma construção da teoria de grupos. Eles também mostraram que qualquer uma de duas conjecturas diferentes implicariam que o expoente ótimo para a multiplicação de matrizes é 2, como se suspeita há muito tempo.

  1. Robinson (2005)

Referências

editar


  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.