Aproximação linear

Em matemática, uma aproximação linear é uma aproximação de uma função geral (mais precisamente, uma função afim). Elas são amplamente usadas no método de diferenças finitas para produzir métodos de primeira ordem para resolver-se ou obter soluções aproximadas para equações.

Linha tangente em (a, f(a))

Definição

editar

Dada uma função   contínua, diferenciável e com uma variável real  , cujo valor é próximo de uma constante  , temos:

 

Para valores próximos de  , a curva descrita pela função   se aproxima de uma reta. Dessa forma, se uma reta for traçada tangente a essa curva, no ponto  , é possível calcular o valor aproximado de  .

Exemplo

editar

Calculemos o valor aproximado de  .

  1. Seja  , o problema se resume a encontrar o valor de  .
  2. Precisamos de um valor   próximo de 25, e do qual saibamos o valor de  , sabemos que   então usemos  
  3. Derivando   e encontrando o valor de  :
      assim,  
  4. Usando a aproximação linear:
     
  5. O resultado é bem próximo do valor real de 2,924

Ver também

editar

Bibliografia

editar
  • Weinstein, Alan; Marsden, Jerrold E. (1984). Calculus III. Berlin: Springer-Verlag. p. 775. ISBN 0-387-90985-0 
  • Strang, Gilbert (1991). Calculus. [S.l.]: Wellesley College. p. 94. ISBN 0-9614088-2-0 
  • Bock, David; Hockett, Shirley O. (2005). How to Prepare for the AP Calculus. Hauppauge, NY: Barrons Educational Series. p. 118. ISBN 0-7641-2382-3