Lei de Snell

comportamento da luz ao atravessar superfícies entre meios com índices de refração distintos

Em ótica, a lei de Snell, ou simplesmente lei de refração, resume-se a uma expressão que dá o desvio angular sofrido por um raio de luz ao passar para um meio com índice de refração diferente do qual ele estava percorrendo. Em outras palavras, descreve a relação entre os ângulos de incidência e refração, quando referindo-se a luz ou outras ondas passando através de uma fronteira (interface) entre dois meios isotrópicos diferentes, tais como água e vidro. A lei de Snell-Descartes refere-se aos cientistas Willebrord Snellius e René Descartes.

Refração da luz na interface entre dois diferentes índices de refração, com .

Para um raio de luz monocromática passando de um meio para o outro, é constante o produto do seno do ângulo, formado pelo raio e pela normal, com o índice de refração em que se encontra esse raio. Matematicamente:[1]

em que e são os ângulos de incidência e refração, respectivamente, e e os índices de refração dos dois meios.

Índice de refração

editar

Para determinar o índice de refração ( ) deve-se utilizar a expressão:

 

Na qual:

  •   é a velocidade da luz no vácuo (constante);
  •   é a velocidade no meio escolhido; e
  •   é o índice de refração do meio escolhido

Explicação

editar

A lei de Snell é usada para determinar a direção dos raios de luz através de meios refrativos com índices de refração distintos. Os índices de refração dos meios,  ,   e assim por diante, são usados para representar o fator pelo qual a velocidade de um raio de luz diminui ao deslocar-se através de um meio refrativo, como vidro ou água, em oposição à sua velocidade no vácuo.

Conforme a luz cruza a fronteira entre os meios, dependendo dos índices de refração relativos entre os dois, a luz poderá ser refratada para um ângulo menor ou maior. Esses ângulos são medidos com respeito à linha normal, representada perpendicularmente à fronteira. No caso onde luz desloca-se do ar para a água, a luz seria refratada em direção à linha normal, pois a velocidade da luz diminui na água; já a luz deslocando-se da água para o ar seria refratada na direção oposta á linha normal.

A refração entre duas superfícies é denominada reversível pois se todas as condições forem idênticas, os ângulos seriam os mesmos para a luz movendo-se na direção oposta.

A Lei de Snell é geralmente verdadeira somente para meios isotrópicos (como o vidro). Em meios anisotrópicos como alguns cristais, a birrefringência pode dividir o raio refratado em dois raios, o ordinário ou raio-o que segue a Lei de Snell, e o outro extraordinário ou raio-e que pode não ser coplanar ao raio incidente.

Quando a luz ou outra onda envolvida é monocromática, isto é, frequência única, a Lei de Snell pode também ser expressa em termos de uma razão dos comprimentos de onda do raio em cada meio, λ1 e λ2:

 

Derivações e fórmula

editar
 
Frente de onda de um ponto de origem no contexto da Lei de Snell. A região abaixo da linha cinza possui um índice de refração maior, e proporcionalmente menor velocidade da luz, do que a região acima dela.

A Lei de Snell pode ser derivada pelo princípio de Fermat,[2] que diz que a luz viaja pelo caminho que leva o menor tempo. Ao tomar a derivada do comprimento do caminho óptico, o ponto estacionário é encontrado, dando o caminho tomado pela luz (Embora deva-se ter em mente que o resultado não mostra a luz utilizando o caminho de menor tempo, mas sim o caminho que é estacionário para pequenas variações, de modo que há casos onde a luz na verdade toma o caminho que leva o maior tempo, como em um espelho esférico). Em uma analogia clássica, o meio de menor índice de refração pode ser visto como uma praia, e o de maior índice de refração como o oceano, e o modo mais rápido de um salva-vidas na praia chegar até uma pessoa no oceano é percorrendo o caminho que segue a Lei de Snell.

Alternativamente, a Lei de Snell pode ser derivada utilizando a interferência de todos os caminhos possíveis da onda de luz da fonte até o observador—que resultam em interferência destrutiva em todos os pontos exceto no extremo da fase (onde a interferência será construtiva}— os quais tornam-se caminhos.

Outra maneira de derivar a Lei de Snell envolve uma aplicação das condições gerais de contorno das equações de Maxwell para radiação eletromagnética.

Ainda outra maneira de derivar a Lei de Snell é baseada em considerações de simetria de translação.[3] Por exemplo, uma superfície homogênea perpendicular à direção z não pode mudar o momento transverso. Já que o vetor de propagação   é proporcional ao momento do fóton, a direção da propagação transversa   deve permanecer a mesma em ambas as regiões. Presumindo sem perda de energia um plano de incidência no plano    . Usando a dependência conhecida do número de onda no índice de refração do meio, derivamos a Lei de Snell.

 
 
 

Sendo   é o número de onda no vácuo. Perceba que nenhuma superfície é realmente homogênea, pelo menos em escala atômica. Ainda assim simetria translacional completa é uma excelente aproximação quando a região é homogênea na escala do comprimento de onda da luz.

Forma vetorial

editar

Dado um vetor de luz normalizado l (apontando da fonte de luz em direção à superfície) e um vetor normalizado do plano normal n, podemos encontrar os raios normalizados refletido e refratado:[4]

 
 
 
 

Nota:   deve ser positivo. Caso contrario, use

 

Exemplo:

 
 
 

Os cossenos podem ser reutilizados nas equações de Fresnel para encontrar a intensidade dos raios resultantes.

A reflexão interna total é indicada por um radicando negativo na equação para  . Nesse caso, uma onda evanescente é produzida, a qual decai rapidamente a partir da superfície e adentrando o segundo meio. A conservação de energia é mantida pela circulação da energia através da fronteira, em que a média da transmissão de energia de rede é zero.

 
Demonstração de não-refração à ângulos maiores que o ângulo crítico.

Reflexão interna total e ângulo crítico

editar

Quando a luz viaja de um meio com índice de refração maior para um com índice de refração menor, a Lei de Snell parece necessitar em alguns casos (quando o ângulo de incidência é suficientemente grande) que o seno do ângulo de refração seja maior que um. Isso claramente é impossível, e a luz nesses casos é completamente refletida pela fronteira, um fenômeno conhecido como reflexão interna total[5] O maior ângulo de incidência possível que ainda resulta em um raio refratado é chamado de ângulo crítico; nesse caso o raio refratado viaja ao longo da fronteira entre os dois meios.

 
Refração da luz na fronteira entre dois meios.

Por exemplo, considere um raio de luz movendo-se da água para o ar com um ângulo de incidência de 50°. Os índices de refração da água e do ar são aproximadamente 1.333 e 1, respectivamente, então a Lei de Snell nos dá a relação.

 

A qual é impossível satisfazer. O ângulo crítico θcrit é o valor de θ1 para o qual θ2 é igual a 90°:

 

Dispersão

editar

Em diversos meios propagadores de onda, a velocidade da onda muda conforme a frequência ou o comprimento de onda das ondas; Isso é verdadeiro para a propagação da luz na maioria dos meios transparentes, com exceção do vácuo. Esses meios são chamados de dispersivos. O resultado é que os ângulos determinados pela Lei de Snell também dependem da frequência e do comprimento de onda, de modo que um raio com comprimentos de ondas mistos, como a luz branca, irá se espalhar ou dispersar. Tal dispersão de luz no vidro ou na água oculta a origem dos arco-íris e de outros fenômenos ópticos, nos quais diferentes comprimentos de onda apresentam-se como diferentes cores.

Em instrumentos ópticos, a dispersão leva à aberração cromática; um borrado dependente da cor que algumas vezes é efeito do limite de resolução. Isso ocorre especialmente em telescópios de refração, antes da invenção das lentes objetivas acromáticas.

Meios condutores, absorvedores ou com perdas

editar

Em um meio condutor, a permissividade e o índice de refração são valores complexos. Consequentemente, o ângulo de refração e o vetor de onda também são. Isso implica que, enquanto as superfícies de uma fase real constante são planas cujas normais fazem um ângulo igual ao ângulo de refração com a normal da fronteira, as superfícies de amplitude constante, em contraste, são planos paralelos à própria fronteira. Como esses dois planos geralmente não coincidem, a onda é dita não-homogênea.[6] A onda refratada é exponencialmente atenuada, com expoente proporcional à componente imaginária do índice de refração.[7][8]

Ver também

editar

Referências

  1. Textos de Apoio ao Professor de Física, v.18 n.2 2007, Instituto de Física – UFRGS, [1]
  2. Fassarella, Lúcio (2007). «Lei de Snell generalizada». Revista Brasileira de Ensino de Física: 215–224. ISSN 1806-1117. doi:10.1590/S1806-11172007000200006. Consultado em 2 de julho de 2022 
  3. John D Joannopoulos, Johnson SG, Winn JN & Meade RD (2008). Photonic Crystals: Molding the Flow of Light 2nd ed. Princeton NJ: Princeton University Press. ISBN 978-0-691-12456-8 
  4. Andrew S. Glassner (1989). An Introduction to Ray Tracing. [S.l.]: Morgan Kaufmann. ISBN 0-12-286160-4 
  5. Aula 30 – Reflexão e Refração da Luz, Universidade Federal do Paraná, Setor de Ciências Exatas, Departamento de Física, [2] Arquivado em 23 de outubro de 2008, no Wayback Machine.
  6. Born and Wolf,sec.13.2, "Refraction and reflection at a metal surface"
  7. Hecht, Optics, sec. 4.8, Optical properties of metals.
  8. S. J. Orfanidis, Electromagnetic Waves & Antennas, sec. 7.9, Oblique Incidence on a Lossy Medium, [3]
  Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.