Matriz de coeficientes
Na álgebra linear, uma matriz de coeficientes é uma matriz que consiste nos coeficientes das variáveis em um conjunto de equações lineares. A matriz é usada na resolução de sistemas de equações lineares.
Matriz de coeficientes
editarEm geral, um sistema com equações lineares e incógnitas pode ser escrito como
onde são as incógnitas e os números são os coeficientes do sistema. A matriz de coeficientes é a matriz com o coeficiente como a (i, j)-ésima entrada:[1][2]
Então, o conjunto de equações acima pode ser expresso de forma mais sucinta como
onde é a matriz de coeficientes e é o vetor coluna de termos constantes.[3]
Relação de suas propriedades com as propriedades do sistema de equações
editarPelo teorema de Rouché-Capelli, o sistema de equações é inconsistente, o que significa que não tem soluções, se o posto da matriz aumentada (a matriz de coeficientes aumentada com uma coluna adicional consistindo do vetor ) for maior que o posto da matriz de coeficientes. Se, por outro lado, os postos dessas duas matrizes são iguais, o sistema deve ter pelo menos uma solução. A solução é única se e somente se o posto for igual ao número de variáveis. Caso contrário, a solução geral tem parâmetros livres; portanto, em tal caso, há uma infinidade de soluções, que podem ser encontradas impondo valores arbitrários em das variáveis e resolvendo o sistema resultante para sua solução única; diferentes escolhas de quais variáveis corrigir, e diferentes valores fixos delas, fornecem diferentes soluções de sistema.
Equações dinâmicas
editarUma matriz de equações de diferenças de primeira ordem com termo constante pode ser escrita como
onde é e e são . Este sistema converge para seu nível de estado estacionário de se e somente se os valores absolutos de todos os autovalores de forem menores que 1.
Uma matriz de equações diferenciais de primeira ordem com termo constante pode ser escrita como
Este sistema é estável se e somente se todos os autovalores de tiverem partes reais negativas.
Referências
- ↑ Liebler, Robert A. (dezembro de 2002). Basic Matrix Algebra with Algorithms and Applications. [S.l.]: CRC Press. pp. 7–8. Consultado em 13 de maio de 2016
- ↑ «CoefficientMatrix | Wolfram Function Repository». resources.wolframcloud.com. Consultado em 22 de setembro de 2020
- ↑ Weisstein, Eric W. «Matrix Equation». mathworld.wolfram.com (em inglês). Consultado em 22 de setembro de 2020