Número de Sherwood
O número de Sherwood, (também chamado o número de Nusselt da transferência de massa) é um número adimensional usado em operações de transferência de massa. Representa a razão de transferência de massa convectiva e difusiva, e é nomeado em honra a Thomas Kilgore Sherwood.
É definido como
onde
- é um comprimento característico (m)
- é a difusividade de massa (m².s−1)
- é o coeficiente de transferência de massa (m.s−1)
Pode ainda ser definido como uma função dos números de Reynolds e Schmidt; por exemplo, para uma esfera ele pode ser expresso como:
Esta forma é particularmente valiosa para engenheiros químicos em situações onde o número de Reynolds e número de Schmidt estão prontamente disponíveis. Desde que Re e Sc são ambos números adimensionais, o número de Sherwood é também adimensional.
Estas correlações são a versão de transferência de massa de uma técnica análoga em transferência de calor escrita com o número de Nusselt em termos do número de Reynolds e número de Prandtl. Para uma correlação para uma dada geometria (e.g. esferas, placas, cilindros, etc.), uma correlação de transferência de calor (frequentemente mais facilmente disponíveis na literatura e trabalhos experimentais, e mais fáceis de determnar) para número Nusselt Nu em termos do número de Reynolds (Re) e o número de Prandtl (Pr) podem ser usadas como uma correlação de transferência de massa por substituir o número de Prandtl com o análogo número dimensional para a transferência de massa, o número de Schmidt, e substituindo o número de Nusselt com o análogo número adimensional para transferência de massa, o número de Sherwood. Como um exemplo, uma correlação de transferência de calor para esferas é dada por:
Esta correlação pode ser feita em uma correlação de transferência de massa usando-se o procedimento acima, que resulta:
Esta é uma forma muito concreta de demonstrar as analogias entre diferentes formas de fenômenos de transporte.
Correlação de Ranz-Marshall
editarQuanto ao número de Sherwood, diversas diferentes expressões são como seguem pela correlação de Ranz-Marshall, incluindo equacionamentos com o número de Prandtl:[1][2][3][4]
- Para 0 ≤ Re < 200 e 0 ≤ Pr ≤ 250
Variações em função de Re
editarO fator 0,69 deve ser usado para 30 ≤ Re ≤ 2000, e para 2 ≤ Re ≤ 200 deve ser usado o fator 0,6:[1]
Referências
- ↑ a b Reidun Gangstø; Single CO2 drops in seawater Arquivado em 21 de fevereiro de 2007, no Wayback Machine.; Cand. Scient. Thesis in Physical Oceanography; Geophysical Institute; University of Bergen; June 2004
- ↑ J.H.A. KIEL, W. PRINS and W.P.M. VAN SWAAIJ; MASS TRANSFER BETWEEN GAS AND PARTICLES IN A GAS-SOLID TRICKLE FLOW REACTOR; Chemical Enginewitig Science, Vol. 48, No. 1, pp. 117-125, 1993.
- ↑ Kōichi Asano; Mass transfer: from fundamentals to modern industrial applications; Wiley-VCH; Weinheim, Germany; 2006.
- ↑ A. S. Mujumdar; Handbook of industrial drying; Third Edition; CRC Press; Boca Raton, Florida; 2007.
Ver também
editar