Teorema da recorrência de Poincaré
Na física, o teorema de recorrência de Poincaré afirma que certos sistemas, após um tempo suficientemente longo, finito, retornarão para um estado muito próximo ao estado inicial. O tempo de recorrência de Poincaré é o período de tempo decorrido até a recorrência (esta por sua vez pode variar muito dependendo do estado inicial exato e do grau de proximidade requerido). O resultado aplica-se a sistemas mecânicos isolados sujeitos a algumas restrições, por exemplo, todas as partículas devem estar ligadas a um volume finito. O teorema é comumente discutido no contexto da teoria ergódica, sistemas dinâmicos e mecânica estatística.
O teorema tem o nome de Henri Poincaré que o propôs inicialmente em 1890[1] e que foi provado por Constantin Carathéodory usando a teoria das medidas, em 1919.[2]
Teorema
editarSeja uma transformação que preserva volume em um espaço de volume finito. Então para uma vizinhança qualquer existe um ponto tal que para algum suficientemente grande, e o conjunto de pontos de que nunca retornam a tem medida zero.[3]
Demonstração
editarConsidere as imagens . Note que como preserva volume, então todas tem o mesmo volume. Além disso, como o volume inicial era finito, então algumas imagens se interceptam, então existem tal que então e portanto existe ponto onde . Isso prova a primeira parte.[3]
Para a segunda parte considere o conjunto de pontos de que nunca retornam a , então precisa formar um conjunto disjunto. Como preserva volume, então se tivesse volume não nulo, teríamos que teria volume infinito, mas por hipótese está definida em um espaço de volume finito, portanto o volume de tem que ser zero.[3]
Referências
- ↑ H. Poincaré (1890). «Sur le problème des trois corps et les équations de la dynamique». Acta Math. 13: 1–270 Œuvres VII 262–490 (theorem 1 section 8)
- ↑ Carathéodory, C. (1919) "Über den Wiederkehrsatz von Poincaré". Berl. Sitzungsber. 580–584; Ges. math. Schr. IV 296–301
- ↑ a b c Geometry and Billiards, Sege Tabachnikov, [1]