Teste de Shapiro–Wilk
O teste de Shapiro-Wilk é um teste de normalidade na estatística frequentista. Foi publicado em 1965 por Samuel Sanford Shapiro e Martin Wilk.[1]
Teoria
editarO teste de Shapiro-Wilk testa a hipótese nula de que uma amostra x1, ..., xn veio de uma população normalmente distribuída. A estatística de teste é
Onde
- (com parênteses envolvendo o índice de subscrito i ; não deve ser confundido com ) é a i ésima estatística de ordem, ou seja, o i ésimo menor número da amostra;
- é a média da amostra.
Os coeficientes são dados por: [1]
onde C é uma norma de vetor: [2]
e o vetor m ,
é feito dos valores esperados das estatísticas de ordem de variáveis aleatórias independentes e distribuídas de forma idêntica, amostradas a partir da distribuição normal padrão. Finalmente, é a matriz de covariância dessas estatísticas de ordem normal.[3]
Interpretação
editarA hipótese nula desse teste é que a população está normalmente distribuída. Assim, se o valor de p for menor que o nível alfa escolhido, a hipótese nula é rejeitada e há evidências de que os dados testados não são normalmente distribuídos. Por outro lado, se o valor de p for maior do que o nível alfa escolhido, a hipótese nula (de que os dados vieram de uma população normalmente distribuída) não pode ser rejeitada (por exemplo, para um nível alfa de 0,05, um conjunto de dados com um valor de p inferior a 0,05 rejeita a hipótese nula de que os dados são de uma população normalmente distribuída).[4]
Análise de potência
editarA simulação de Monte Carlo descobriu que Shapiro–Wilk tem a melhor potência para uma determinada significância, seguido de perto por Anderson–Darling ao comparar os testes de Shapiro–Wilk, Kolmogorov –Smirnov, Lilliefors e Anderson–Darling.[5]
Ver também
editarReferências
editar- ↑ a b Shapiro, S. S.; Wilk, M. B. (1965). «An analysis of variance test for normality (complete samples)». Biometrika. 52 (3–4): 591–611. JSTOR 2333709. MR 205384. doi:10.1093/biomet/52.3-4.591 p. 593
- ↑ [1]
- ↑ [2]
- ↑ «How do I interpret the Shapiro–Wilk test for normality?». JMP. 2004. Consultado em 24 março de 2012
- ↑ Razali, Nornadiah; Wah, Yap Bee (2011). «Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests». Journal of Statistical Modeling and Analytics. 2 (1): 21–33. Consultado em 30 de março de 2017