Peccot Lectures
A Peccot Lecture[1] (em francês: Cours Peccot) é um curso de matemática de um semestre ministrado no Collège de France. Cada curso é ministrado por um matemático com menos de 30 anos de idade que se destaca pelo seu trabalho promissor. O curso consiste em uma série de conferências durante as quais o laureado expõe seus trabalhos de pesquisa recentes.
Ser conferencista Peccot é uma distinção que muitas vezes antevê uma carreira científica excepcional. Vários futuros recipientes da Medalha Fields, Prêmio Abel, membros da Académie des Sciences e professores do Collège de France estão entre os laureados. Alguns dos recipientes mais ilustres incluem Émile Borel e os medalhistas Fields Laurent Schwartz, Jean-Pierre Serre e Alain Connes.
Algumas palestras Peccot podem receber adicionalmente - excepcionalmente e irregularmente - o prêmio Peccot ou o prêmio Peccot-Vimont.
História
editarAs palestras Peccot estão entre as várias manifestações organizadas no Collège de France que são financiadas e administradas por legados da família de Claude-Antoine Peccot, um jovem matemático que morreu aos 20 anos de idade.[2] Várias doações sucessivas à fundação (em 1886, 1894 e 1897) por Julie Anne Antoinette Peccot e Claudine Henriette Marguerite Lafond (viúva Vimont) - respectivamente a mãe e a madrinha de Claude-Antoine Peccot - permitiram criar estipêndio anual, seguido por nomeações anuais de palestras, concedidas a matemáticos com idade inferior a 30 anos, que se mostraram promissores. Desde 1918 as palestras Peccot foram ampliadas para dois ou três matemáticos a cada ano.[3]
Laureados
editarLaureados da Peccot lecture (e prêmio) que subsequentemente receberam a Medalha Fields
editar- Laurent Schwartz: Peccot lecture and prize 1945–1946, Fields medal 1950
- Jean-Pierre Serre: Peccot lecture and prize 1954–1955, Fields medal 1954
- Alexandre Grothendieck: Peccot lecture 1957–1958, Fields medal 1966
- Pierre Deligne: Peccot lecture 1971–1972, Fields medal 1978
- Alain Connes: Peccot lecture and prize 1975–76, Fields medal 1982
- Pierre-Louis Lions: Peccot lecture 1983–1984, Fields medal 1994
- Jean-Christophe Yoccoz: Peccot lecture 1987–1988, Fields medal 1994
- Laurent Lafforgue: Peccot lecture and prize 1995–1996, Fields medal 2002
- Wendelin Werner: Peccot lecture 1998–1999, Fields medal 2006
- Cédric Villani: Peccot lecture and prize 2002–2003, Fields medal 2010
- Artur Avila: Peccot lecture 2004–2005, Fields medal 2014
- Alessio Figalli: Peccot lecture 2011–2012, Fields medal 2018
- Peter Scholze: Peccot lecture 2012–2013, Fields medal 2018
Peccot lectures
editarAno | Nome | Título da palestra |
---|---|---|
1899–1902 | Émile Borel | Three years in a row: Étude des fonctions entières, Étude des séries à termes positifs et des intégrales définies à éléments positifs, Étude des fonctions méromorphes |
1902–1903 | Henri Lebesgue | Définition de l’intégrale |
1903–1904 | René-Louis Baire | Leçons sur les fonctions discontinues |
1904–1905 | Henri Lebesgue | Séries trigonométriques |
1905–1906 | Guillaume Servant | Sur la déformation des surfaces et sur quelques problèmes qui s’y rattachent |
1906–1907 | Pierre Boutroux | Quelques points de la théorie des équations différentielles |
1907–1908 | Pierre Boutroux | Sur l’inversion des fonctions entières |
1908–1909 | Ludovic Zoretti | Les points singuliers des fonctions analytiques |
1909–1910 | Émile Traynard | Étude des fonctions abéliennes, principales propriétés des surfaces hyperelliptiques |
1910–1911 | Louis Rémy | Théorie des intégrales doubles et des intégrales de différentielles totales attachées aux surfaces algébriques |
1911–1912 | Jean Chazy | Leçons sur les équations différentielles à points critiques fixes |
Albert Châtelet | Théorie des modules de points | |
1912–1913 | Arnaud Denjoy | Théorie des fonctions entières canoniques d’ordre infini |
1913–1914 | Maurice Gevrey | Équations aux dérivées partielles du type parabolique, des problèmes aux limites et de la nature des solutions |
René Garnier | Équations différentielles dont les intégrales ont leurs points critiques fixes et le problème de Riemann pour les équations linéaires | |
1914–1915 | René Garnier | Systèmes différentiels dont les intégrales ont leurs points critiques fixes |
1917–1918 | Gaston Julia | Théorie des nombres |
1918–1919 | Georges Giraud | Sur les fonctions automorphes d’un nombre quelconque de variables |
Paul Lévy | Sur les fonctions de lignes et les équations aux dérivées fonctionnelles | |
1919–1920 | Léon Brillouin | Théorie des solides et des liquides en liaison avec la théorie du corps noir |
Gaston Julia | Études des points singuliers essentiels isolés des fonctions uniformes | |
1920–1921 | Maurice Janet | Théorie générale des systèmes d’équations aux dérivées partielles |
1921–1922 | René Thiry | |
1922–1923 | Torsten Carleman | Les fonctions quasi analytiques |
Robert Deltheil | Notions de probabilité élémentaire, les probabilités continues envisagées au point de vue fonctionnel ; questions de maximum et de minimum | |
1923–1924 | René Lagrance | Sur le calcul différentiel absolu |
1924–1925 | Marcel Légaut | Étude géométrique des systèmes de points dans un plan, application à la théorie des courbes gauches algébriques |
1925–1926 | Henri Milloux | Sur le théorème d'Émile Picard |
1927–1928 | Joseph Kampé de Fériet | Sur quelques applications des fonctions modulaires à la théorie des fonctions analytiques |
Yves Rocard | Progrès récents de la théorie cinétique des gaz et applications | |
1928–1929 | Szolem Mandelbrojt | Quelques recherches modernes dans la théorie des fonctions analytiques |
1929–1930 | Jean Favard | |
1930–1931 | Wladimir Bernstein | Résultats acquis sur la distribution des singularités des séries de Dirichlet |
1931–1932 | Jean Delsarte | Les groupes de transformations linéaires dans l’espace de Hilbert |
1932–1933 | Henri Cartan | Sur quelques problèmes de la théorie des fonctions analytiques de plusieurs variables complexes |
André Weil | Arithmétique sur les variétés algébriques | |
1933–1934 | Jean Dieudonné | Recherches modernes sur les zéros des polynômes |
Paul Dubreil | Quelques propriétés générales des variétés algébriques | |
1934–1935 | René de Possel | Sur certaines théories de la mesure et de l’intégrale |
Jean Leray | Équations fonctionnelles, théorie générale et applications | |
1935–1936 | Marie-Louise Dubreil-Jacotin | Les ondes de type permanent à deux dimensions dans les fluides incompressibles |
1936–1937 | Georges Bourion | Série de Taylor à structure lacunaire |
Jean-Louis Destouches | Mécanique des systèmes: théorie ondulatoire relativiste | |
1937–1938 | Jacques Solomon | Problèmes récents de la théorie des quanta : neutrons, neutrinos et photons |
Claude Chevalley | Théorie des corps et systèmes hypercomplexes | |
1938–1939 | Frédéric Marty | La théorie des hypergroupes et ses applications récentes |
1940–1941 | Claude Chabauty | Équations diophantiennes |
1941–1942 | Gérard Pétiau | Études de quelques équations d’ondes corpusculaires |
1942–1943 | Marie-Antoinette Tonnelat | Les théories unitaires de la lumière et de la gravitation |
Jean Ville | La théorie de la corrélation, applications récentes | |
1943–1944 | Jacques Dufresnoy | Sur quelques points de la théorie des fonctions méromorphes |
Hubert Delange | Quelques applications d’un principe de la théorie du potentiel | |
1944–1945 | André Lichnerowicz | Sur l’intégration des équations d’Einstein |
1945–1946 | Jacqueline Ferrand | Problèmes de frontière dans la représentation conforme |
Laurent Schwartz | Une extension de la dérivation et de la transformation de Fourier | |
1946–1947 | Gustave Choquet | Propriétés topologiques des fonctions, applications à la géométrie et à l’analyse |
1948–1949 | Roger Apéry | La géométrie algébrique et les idéaux |
1949–1950 | Jacques Deny | Problèmes de la théorie du potentiel |
1950–1951 | Jean-Louis Koszul | La cohomologie des espaces fibrés différentiables |
Evry Schatzman | La structure interne des étoiles et des planètes | |
1951–1952 | Roger Godement | Fonctions sphériques et groupes de Lie semi–simples |
Michel Hervé | Problèmes particuliers sur les fonctions de deux variables complexes, itération, fonctions automorphes | |
1952–1953 | Jean Combes | Fonctions analytiques sur une surface de Riemann |
1953–1954 | Yvonne Fourès-Bruhat | Le problème de Cauchy pour les systèmes d’équations hyperboliques du second ordre non linéaires |
1954–1955 | Jean-Pierre Serre | Cohomologie et géométrie algébrique |
1955–1956 | Maurice Roseau | Les fonctions pseudo-analytiques, application à la mécanique des fluides |
Paul Malliavin | Analyse harmonique d’un opérateur différentiel | |
1956–1957 | Jean-Pierre Kahane | Sur quelques problèmes d’analyse harmonique |
1957–1958 | Marcel Berger | Espaces symétriques affines |
Alexander Grothendieck | Classes de Chern et théorème de Riemann-Roch pour les faisceaux algébriques cohérents | |
1958–1959 | Jacques-Louis Lions | Équations différentielles opérationnelles |
Bernard Malgrange | Sur les fonctions moyenne-périodiques de plusieurs variables | |
1959–1960 | François Bruhat | Distributions et représentations des groupes |
1960–1961 | Pierre Cartier | Cohomologie galoisienne et diviseurs sur une variété algébrique |
1961–1962 | Jacques Neveu | Théorie unifiée des processus de Markov sur un espace dénombrable d’états |
1962–1963 | Jean-Paul Benzécri | Statistique et structure des langues naturelles, essai de synthèse mathématique |
Philippe Nozières | Application de la théorie des champs à l’étude des liquides de Fermi et de Bose au zéro absolu | |
1963–1964 | Paul-André Meyer | Théorie des surmartingales |
1964–1965 | Pierre Gabriel | Fondements de la topologie simpliciale |
Marcel Froissart | Théorème asymptotiques en théorie des particules élémentaires | |
1965–1966 | Yvette Amice | Analyse p-adique |
1966–1967 | Jean Ginibre | Sur le problème de la limite thermodynamique en mécanique statistique |
Michel Demazure | Algèbres de Lie filtrées | |
1967–1968 | Uriel Frisch | Les fonctions parastochastiques |
Pierre Grisvard | Sur quelques types d’équations opérationnelles, applications à certains problèmes aux limites en équations aux dérivées partielles | |
1968–1969 | Michel Raynaud | Variétés abéliennes sur un corps local |
Claude Morlet | Automorphismes et plongements de variétés | |
Yves Meyer | Nombres de Pisot et nombres de Salem en analyse harmonique | |
1969–1970 | Roger Temam | Quelques nouvelles méthodes de résolution d’équations aux dérivées partielles linéaires et non linéaires |
Gabriel Mokobodzki | Quelques structures algébriques de la théorie du potentiel | |
1970–1971 | Jean-Pierre Ferrier | Application à l’analyse complexe du calcul symbolique de Waelbroeck |
Hervé Jacquet | Fonctions automorphes et produits eulériens | |
Gérard Schiffmann | Théorie de Hecke d’après Jacquet-Langlands | |
1971–1972 | Pierre Deligne | Les immeubles des groupes de tresses généralisés |
Louis Boutet de Monvel | Problèmes aux limites pour les opérateurs pseudo-différentiels et étude de l’analyticité | |
1972–1973 | François Laudenbach | Topologie de la dimension 3 : homotopie et isotopie |
Jean-Michel Bony | Hyperfonctions et équations aux dérivées partielles | |
1973–1974 | Haïm Brézis | Les semi–groupes de contractions non linéaires |
Michel Duflo | La formule de Plancherel pour les groupes de Lie résolubles exponentiels | |
Jean Zinn–Justin | Étude des théories de jauge au moyen de méthodes fonctionnelles | |
1974–1975 | Robert Roussarie | Modèles locaux de formes différentielles et de champs de vecteurs |
Jean-Marc Fontaine | Groupes p-divisibles sur les corps locaux | |
André Neveu | Modèles duaux de résonances pour les interactions fortes | |
1975–1976 | Alain Connes | Sur la classification des algèbres de von Neumann et de leurs automorphismes |
Bernard Teissier | Sur la géométrie des singularités analytiques | |
1976–1977 | Luc Tartar | Problèmes d’homogénéisation dans les équations aux dérivées partielles |
Michel Waldschmidt | Nombres transcendants et groupes algébriques | |
1977–1978 | Jean Lannes | Formes quadratiques et variétés |
Arnaud Beauville | Surfaces de type général | |
1978–1979 | Bernard Gaveau | Problèmes non linéaires en analyse complexe |
Grégory Choodnovsky | Diophantine analysis problems in transcendence theory and applications | |
1979–1980 | Gilles Robert | Unités elliptiques et séries d’Eisentein |
1980–1981 | Michel Talagrand | Compacts de fonctions mesurables et applications |
Gilles Pisier | Séries de Fourier aléatoires, processus gaussiens et applications à l’analyse harmonique | |
Christophe Soulé | K–théorie et valeurs de fonctions zêta | |
1981–1982 | Jean-Luc Brylinski | Systèmes différentiels et groupes algébriques |
Jean–Bernard Baillon | Quelques applications de la géométrie des espaces de Banach à l’analyse fonctionnelle | |
1982–1983 | Jean-Loup Waldspurger | Valeurs de certaines fonctions L-automorphes en leur centre de symétrie |
1983–1984 | Pierre-Louis Lions | Méthode de concentration-compacité en calcul des variations |
Guy Henniart | Sur les conjectures de Langlands | |
1983–1984 | Laurent Clozel | Changement de base pour les formes automorphes sur le groupe linéaire |
1984–1985 | Joseph Oesterlé | Démonstration de la conjecture de Bieberbach d’après Louis de Branges |
1985–1986 | Jean-Pierre Demailly | Critères géométriques d’algébricité pour les variétés analytiques complexes |
1987–1988 | Jean-Lin Journé | Opérateur d’intégrales singulières et applications |
Jean-Claude Sikorav | Questions de géométrie symplectique | |
1988–1989 | Bernard Larrouturou | Problèmes non linéaires en théorie de la combustion : modélisation, analyse et résolution numérique |
1989–1990 | Jean-Benoît Bost | Quelques propriétés du mouvement brownien et de ses points multiples, applications à l’analyse et à la physique |
Jean-François Le Gall | Quelques équations cinétiques et leurs limites fluides | |
Benoît Perthame | Principe d’Oka et K–théorie des algèbres de Banach non commutatives | |
1990–1991 | Claude Viterbo | Systèmes hamiltoniens, topologie symplectique et fonctions génératrices |
Olivier Mathieu | Techniques de caractéristique finie appliquées aux représentations en caractéristique zéro | |
1991–1992 | Fabrice Bethuel | EDP non linéaires en théorie des cristaux liquides et en géométrie |
Noam Elkies | Elliptic surfaces and lattices | |
Claire Voisin | Variations de structure de Hodge et cycles algébriques des hypersurfaces | |
1992–1993 | François Golse | Limites hydrodynamiques de modèles cinétiques |
1993–1994 | Ricardo Perez-Marco | |
Marc Rosso | Points fixes indifférents et difféomorphismes analytiques du cercle | |
1994–1995 | Loïc Merel | L’arithmétique des jacobiennes de courbes modulaires |
Eric Séré | Problèmes variationnels non compacts et systèmes hamiltoniens | |
1995–1996 | Laurent Lafforgue | Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson |
1996–1997 | Christophe Breuil | Cohomologie log-cristalline et cohomologie étale de torsion |
Christine Lescop | Autour de l’invariant de Casson | |
1997–1998 | Andrei Moroianu | Géométrie spinorielle et groupes d’holonomie |
1998–1999 | Philippe Michel | Sur les zéros des fonctions L des formes modulaires, méthodes analytiques, exposants d’intersection |
Wendelin Werner | Invariance conforme et mouvement brownien plan | |
1999–2000 | Emmanuel Grenier | Quelques problèmes de stabilité en mécanique des fluides |
Raphaël Rouquier | Catégories de représentations modulaires de groupes finis: approches géométriques | |
2000–2001 | Vincent Lafforgue | K–théorie bivariante pour les algèbres de Banach et conjecture de Baum–Connes, dynamique des homéomorphismes de surfaces |
Frédéric Le Roux | Versions topologiques du théorème de la fleur de Leau et du théorème de la variété stable | |
2001–2002 | Denis Auroux | Techniques approximativement holomorphes et invariants des variétés symplectiques |
Thierry Bodineau | Quelques aspects mathématiques de la coexistence de phases | |
2002–2003 | Franck Barthe | Extensions du théorème de Brunn-Minkowski, conséquences géométriques et entropiques |
Cédric Villani | Propriétés qualitatives des solutions de l’équation de Boltzmann | |
2003–2004 | Laurent Fargues | Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands locales |
Laure Saint-Raymond | Méthodes mathématiques pour l’étude des limites hydrodynamiques | |
2004–2005 | Artur Avila | Dynamique des cocycles quasi périodiques et spectres de l’opérateur presque-Mathieu |
Stefaan Vaes | Coactions de groupes quantiques et facteurs de type III | |
2005–2006 | Laurent Berger | Représentations galoisiennes et analyse p-adique |
Emmanuel Breuillard | Propriétés qualitatives des groupes discrets | |
2006–2007 | Erwan Rousseau | Hyperbolicité des variétés complexes |
Jérémie Szeftel | Problèmes mathématiques autour de la conjecture de courbure L2 pour les équations d’Einstein | |
2007–2008 | Karine Beauchard | Contrôle d’équations de Schrödinger |
Gaëtan Chenevier | Variétés de Hecke des groupes unitaires et représentations galoisiennes | |
2008–2009 | Joseph Ayoub | Motifs, réalisations et groupes de Galois motiviques |
Julien Dubedat | Systèmes invariants conformes: chemins et champs | |
2009–2010 | Antoine Touzé | Invariants, cohomologie et représentations fonctorielles des groupes algébriques |
2010–2011 | Sylvain Arlot | Sélection de modèles et sélection d’estimateurs pour l’apprentissage statistique |
Anne–Laure Dalibard | Quelques problèmes de couches limites en mécanique des fluides | |
2011–2012 | Alessio Figalli | Stabilité dans les inégalités fonctionnelles, transport optimal et EDP |
Vincent Pilloni | Variété de Hecke et cohomologie cohérente | |
2012–2013 | Valentin Feray | Approche duale des représentations du groupe symétrique |
Christophe Garban | Autour de la percolation presque-critique et de l’arbre couvrant minimal dans le plan | |
Peter Scholze | A p-adic analogue of Riemann’s classification of complex abelian varieties | |
2013–2014 | François Charles | Quelques progrès récents sur la géométrie arithmétique des surfaces |
Nicolas Rougerie | Théorèmes de de Finetti, limites de champ moyen et condensation de Bose–Einstein | |
2014–2015 | Hugo Duminil-Copin | Geometric representations of low dimensional spin systems |
Gabriel Dospinescu | Autour de la correspondance de Langlands locale p-adique pour | |
2015–2016 | Nicolas Curien | Épluchage des cartes planaires aléatoires |
2016–2017 | Marco Robalo | Géométrie algébrique dérivée et les invariants de Gromov-Witten |
Raphael Beuzart-Plessis | Factorisations de périodes et formules de Plancherel | |
Olivier Taïbi | Motifs sur Q de conducteur 1 du point de vue automorphe | |
2017–2018 | Yannick Bonthonneau | Analyse microlocale semi–classique sur des variétés à pointes |
Camille Horbez | Géométrie asymptotique du groupe des automorphismes extérieurs d'un groupe libre | |
2018–2019 | Jacek Jendrej | Théorème du seuil et bulles en interaction pour l'équation wave maps critique |
2019–2020 | Najib Idrissi | Homotopie réelle des espaces de configuration |
Thomas Leblé | Aspects microscopiques des systèmes à interaction logarithmique | |
Irène Waldspurger | Optimisation non convexe pour la reconstruction de matrices de rang faible | |
2020–2021 | Antoine Song | Sur l'existence de points critiques de l'aire et du volume |
Emmanuel Lecouturier | L'idéal d'Eisenstein de Mazur |
Referências
- ↑ «Présentation». www.college-de-france.fr (em francês). Consultado em 24 de março de 2021
- ↑ «Le Collège de France. Quelques données sur son histoire et son caractère propre». L'Annuaire du Collège de France. Cours et travaux (em francês) (113): 5–71. 1 de abril de 2014. ISSN 0069-5580
- ↑ Fondation Peccot-Vimont. Paris: Service archives du Collège de France. 2012. Cópia arquivada em 28 de julho de 2014