Monomorfismo (teoria das categorias)

homomorfismo injectivo

Um monomorfismo (ou mono), no contexto de teoria das categorias, é uma generalização do conceito de função injetiva. Uma seta numa categoria é um monomorfismo se e somente se implica sempre que são setas e é objeto de . Ou seja, uma seta é mono se ela pode ser cancelada à esquerda de uma composição.

Exemplo de um monomorfismo

A noção dual a monomorfismo é epimorfismo.[1]

Exemplos

editar

Seção

editar

Se gf = 1c para algumas setas f : cd e g : dc, f é chamada inversa à direita ou seção e g é chamada inversa à esquerda ou retração. Toda seção é monomorfismo e toda retração é epimorfismo.[1]

Eis alguns exemplos:

  • Na categoria dos conjuntos, se A ≠ ∅, uma função f : AB é uma seção precisamente quando é injetiva.[4]
  • Na categoria dos módulos sobre um anel R, um homomorfismo φ : MN é uma seção precisamente quando há sequência exata que cinde, isto é, quando há diagrama comutativo no qual a setas verticais são isomorfismos, e as duas setas na linha de baixo são definidas por a ↦ (a, 0) e (a, b) ↦ b. (O módulo N "cinde-se" em M e o conúcleo de φ.) Por isso, seções são também chamadas de monomorfismos que cindem.[5]

Subobjetos

editar

Dados monomorfismos   de mesmo contradomínio, escreve-se   quando   para alguma  ; escreve-se   quando   e  . Então,   é relação de equivalência no conjunto dos monomorfismos de contradomínio  , e cada classe de equivalência associada é chamada um subobjeto de  .

Na categoria dos conjuntos e na dos grupos, por exemplo, subobojetos correspondem biunivocamente a subconjuntos e subgrupos, respectivamente.

Dada uma família   de subobjetos de   (aqui, usa-se a mesma notação para um subobjeto e um monomorfismo representante), o ínfimo de   (se existe) é exatamente o produto fibrado (ou pullback) dos  .[6]

Referências

  1. a b c (Mac Lane, §I.5)
  2. «Top – nLab». Consultado em 20 de fevereiro de 2020 
  3. (Adámek, Herrlich, Strecker, §II.7.33)
  4. (Adámek, Herrlich, Strecker, §II.7.20)
  5. (Aluffi, §III.7.2)
  6. (Mac Lane, §V.7)

Bibliografia

editar
  • ADÁMEK, Jiří; HERRLICH, Horst; STRECKER, George E. (2004). Abstract and Concrete Categories: The Joy of Cats. [S.l.: s.n.] 
  • ASPERTI, Longo. Categories, Types, and Structures. The MIT Press, Cambridge, Massachusetts, London.
  • BARR, Michael; WELLS, Charles. Category Theory for Computing Science, Prentice Hall, London, UK, 1990.
  • MAC LANE, Saunders. Categories for the Working Mathematician. 2 ed. Graduate Texts in Mathematics 5. Springer, 1998. ISBN 0-387-98403-8.
  • ALUFFI, Paolo (2009). Algebra: Chapter 0. Col: Graduate Studies in Mathematics 1 ed. [S.l.]: American Mathematical Society. ISBN 978-0-8218-4781-7 

Ver também

editar

Ligações externas

editar


  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.